从更大的版图视角来看,要构建全面的隐私保护和治理体系,不仅需要融合区块链、人工智能、大数据、隐私计算等多种技术,还需要结合法律法规、监管治理等诸多策略。
 

数据安全新规下的数据新基建

在数字化社会中,大家对于数据生产要素有着更为强烈的需求,无论是用户服务、业务营销都需要使用大量的数据,尤其是在分布式协作的业务模式中,各方都希望数据能顺畅地流通,并合理地体现数据价值。但与之相悖的是,数据孤岛仍然存在,数据的粗放式使用仍待解决。

与此同时,合法合规成为大势所趋。不论是在国内还是国际上,与个人信息保护、数据安全相关的法律法规一一出台,都对个人信息保护和数据安全等方面提出了更为严格的要求。这意味着,要确保数据的安全,也要尊重个人的隐私权益;在数据全生命周期上,要求实现全面规范,达成合规地流通。

以用户为中心,在安全隐私前提下交换数据,并提供优质合规的服务,是数字化社会建设的趋势,需要在技术、业务模式、治理体系上做出更多的创新。在分布式系统里引入隐私计算、发展合规的数据交易所等举措,都体现出这种创新精神。

区块链与隐私计算,相辅相成

在隐私计算领域,区块链、联邦学习和安全多方计算已然成为三大关键核心技术,而且这三大技术之间互有侧重,也有许多重合和联系。

其中,从区块链的角度出发,我们可以看到,一方面,区块链上的数据需要采用隐私算法来保护;另一方面,区块链也可以成为隐私计算协作里的底座和枢纽:采用区块链技术去记录、追溯多方协作中的数据集、算法模型、计算过程,并对最终结果进行评估和共识,持续优化协作效率。

此前几年,我们在区块链领域里探索应用落地时,常常是用区块链为业务场景构建 “分布式账本”。合规的应用都会对用户和商户进行KYC(Know Your Client),其中也存在不少待通过隐私计算等创新解法来解答的问题。

例如,身份信息是否可以向全联盟链公布?在交易时,交易里的金额、相关方是否明文公开?每个人拥有的资产,是否可以被随意查询?人们的业务行为,是否会在未授权的情况下被滥用?

例如,在消费场景的积分卡券业务中,商家和商家之间通常不希望过多地暴露自己的经营状况,比如有多少用户开卡、充值,以及每天的流水等;个人用户也不希望自己的消费行为被公开审视。

于是,在隐私问题尚未能彻底解决之前,我们通常采用的办法是,引入核心权威机构参与共识和维护全账本,而其他参与者则分层分片,以不同权限的角色参与。但这样,在一定程度上增加了系统的复杂性,影响了用户体验,同时,给区块链应用的规模化和普及化带来了挑战。

目前,区块链也普遍用于政务领域,比如在智慧城市管理以及各种民生应用中,为大家提供“一网通办”的良好体验,这就需要多领域、多地域、多部门的通力协作。我们可以看到,政务应用覆盖面广,角色众多,数据存在多级别的敏感性和重要性。

区块链可以作为分布式协作的底座,通过数据目录、数据湖等方式,构建数据流转的枢纽,同时引入隐私计算和全面的治理规则,界定数据的边界,使数据在“不出库”的同时,依旧可以实现身份认证、隐匿查询、模型构建等能力。

从更大的版图视角来看,要构建全面的隐私保护和治理体系,不仅需要融合区块链、人工智能、大数据、隐私计算等多种技术,还需要结合法律法规、监管治理等诸多策略。

“双循环”模型体现全生命周期的闭环

区块链隐私保护的场景丰富、角色众多,流程多样、数据立体,我们可以用 “双循环”机制做进一步分析。

首先,我们从用户端出发,尊重用户对数据的知情权和控制权,把重要的数据交给用户管理。

比如,验证身份的“四要素”中,用户的身份凭据和联系方式通常来自政府和运营商这些权威机构,当用户和某一个业务场景产生联系时,他们并不需要提供全部的明文信息,只需要选择性披露一些可验证的凭据,用以代替明文。

基于分布式验证机制即可实现多场景的验身,证明自己的合法身份,此时业务提供方即使未获得更多明文数据,但也不能拒绝服务。这就从根源上降低乃至杜绝了用户关键隐私的泄露风险。

其次,在业务方,依旧可以采用诸如联邦学习、安全多方计算等技术,对用户已经授权的、合规采集的业务数据进行处理。

在用户知情同意的前提下,在B端实现与合作伙伴之间的协同计算,数据不出库,隐私不泄露,但实现诸如风控、营销、广告等对业务运营有重要价值的事务。最终实现业务效果的提升,在给业务方带来效益的同时,也为用户提供更优质的服务,或者权益上的回报。其整个价值体系是闭环的,合规的,可持续的。

例如物联网和区块链,在采集端,就需要给设备分配身份和标识,同时算法上要做到去标识,防泄露;在用户端,不但要提供个性化的服务,还要做到防止不必要的画像,在做到可验证用户身份和资质的同时,又不能无端地追踪用户行为轨迹;最终,在提供优质服务、安全存储用户数据的时候,又要尊重用户的意愿,包括注销退出的要求。